If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-2.4t-22=0
a = 4.9; b = -2.4; c = -22;
Δ = b2-4ac
Δ = -2.42-4·4.9·(-22)
Δ = 436.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2.4)-\sqrt{436.96}}{2*4.9}=\frac{2.4-\sqrt{436.96}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2.4)+\sqrt{436.96}}{2*4.9}=\frac{2.4+\sqrt{436.96}}{9.8} $
| 4(c-5)+9=5+c-16 | | T10=2+5n | | (5x-4)=-5 | | x+5=-5x-10 | | 6c+5=-1 | | -3x+7=-7x+3(-3+4x) | | (x-3)/2=4 | | -13/7-4=2/a+5 | | -3g=18 | | 2y+3=3(y=7) | | 2.6=4.7-0.3x | | 12y+6=24+6 | | f(-4)=-5(4) | | -2c-43=4c | | 4g+3(-8+5g)=1g | | 5(2x+4)-8=3x+4(x-6) | | 7x-3x(×+1)=×^2 | | 9c-2c=14 | | 7x-3x(×+1)=×^3 | | -8a-8a=-8(4a+1)+5(a-5) | | 5x/2+5x/3=450 | | 10y-y=24+y | | 3m+-10=-4 | | -5a+6=6a-36 | | x+26+2x124=180 | | 3(x-2)=(-150) | | 5x/3+5x/2=350 | | 6=1/4x+12 | | -10n-9=-19 | | (3x+1)^2=-4 | | 15+4x=2(x+5)+2x | | 7/2x(1010/2x)=0 |