If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4-(1/6)x=17/6
We move all terms to the left:
4-(1/6)x-(17/6)=0
Domain of the equation: 6)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-(+1/6)x+4-(+17/6)=0
We multiply parentheses
-x^2+4-(+17/6)=0
We get rid of parentheses
-x^2+4-17/6=0
We multiply all the terms by the denominator
-x^2*6-17+4*6=0
We add all the numbers together, and all the variables
-x^2*6+7=0
Wy multiply elements
-6x^2+7=0
a = -6; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-6)·7
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*-6}=\frac{0-2\sqrt{42}}{-12} =-\frac{2\sqrt{42}}{-12} =-\frac{\sqrt{42}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*-6}=\frac{0+2\sqrt{42}}{-12} =\frac{2\sqrt{42}}{-12} =\frac{\sqrt{42}}{-6} $
| x/1.2=25 | | 16=-8-2g | | 0.5*m-10=-20 | | 8-4(1-9s)=32 | | 3^3x=333 | | 2=15n | | -14+10m=-24 | | r-6=-23 | | k÷-3=9 | | 2m+5=5*(m-7)-3m | | 15+1/2x=30 | | -27=n-9 | | 23=9(6v+8) | | (2x-5)/2=17 | | 4(2x+6)=17x+8-9x+16 | | 12=8v-5v | | -4(a-7)=10-a | | x+73=3x | | n-17=0 | | 9c+5c=23 | | 3s−s+5s−3s−4=20 | | -70=10r | | 9x+26x-6=7(5x+9) | | x−12=−5x= | | -12=r-12 | | 3r-3r+6r-5=19 | | 7(1-8n)=16 | | 2=14+r | | 4x=12+7 | | 15k=-105 | | 8^a=125 | | 8u-4u-2u-1=17 |