4*5=(x-2)(x+4)

Simple and best practice solution for 4*5=(x-2)(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4*5=(x-2)(x+4) equation:



4*5=(x-2)(x+4)
We move all terms to the left:
4*5-((x-2)(x+4))=0
We add all the numbers together, and all the variables
-((x-2)(x+4))+20=0
We multiply parentheses ..
-((+x^2+4x-2x-8))+20=0
We calculate terms in parentheses: -((+x^2+4x-2x-8)), so:
(+x^2+4x-2x-8)
We get rid of parentheses
x^2+4x-2x-8
We add all the numbers together, and all the variables
x^2+2x-8
Back to the equation:
-(x^2+2x-8)
We get rid of parentheses
-x^2-2x+8+20=0
We add all the numbers together, and all the variables
-1x^2-2x+28=0
a = -1; b = -2; c = +28;
Δ = b2-4ac
Δ = -22-4·(-1)·28
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{29}}{2*-1}=\frac{2-2\sqrt{29}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{29}}{2*-1}=\frac{2+2\sqrt{29}}{-2} $

See similar equations:

| 2c+2(-7c+6)=72 | | 3r-8=56 | | (x/2)(7x)=180 | | 3ę^x=21 | | 18=-3(m-6 | | 5(6x+5)=355 | | 28=x^2+2x | | 3(3n-5)=-(3n-141) | | 12-2a=40 | | 1/4(k-9)=4 | | d-1/9=2/9 | | 20=14x-3 | | 3(-4+7x)=72 | | s/5+3=35 | | 13p−9p=16 | | 3(-4+7x=72 | | 30+n/2=120 | | 3/2y+5/3=y−5/3 | | 5x-4x+5x=24 | | 4n−5=−9n+47. | | 4n−5=−9n+47 | | 16n=14 | | -10+6=-7x+9 | | b-8=1/2 | | 100-7a=44 | | x+(x/12)=78 | | 4s-2(1-s)=2(3s-1) | | 8x2=16+5x3=15 | | 0.10d+0.01(d+3)=3 | | 2r+r=57 | | 1/5w=-20 | | 2k^2+3k+21=0 |

Equations solver categories