4(y+1)+5=6(y-1)y

Simple and best practice solution for 4(y+1)+5=6(y-1)y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(y+1)+5=6(y-1)y equation:



4(y+1)+5=6(y-1)y
We move all terms to the left:
4(y+1)+5-(6(y-1)y)=0
We multiply parentheses
4y-(6(y-1)y)+4+5=0
We calculate terms in parentheses: -(6(y-1)y), so:
6(y-1)y
We multiply parentheses
6y^2-6y
Back to the equation:
-(6y^2-6y)
We add all the numbers together, and all the variables
4y-(6y^2-6y)+9=0
We get rid of parentheses
-6y^2+4y+6y+9=0
We add all the numbers together, and all the variables
-6y^2+10y+9=0
a = -6; b = 10; c = +9;
Δ = b2-4ac
Δ = 102-4·(-6)·9
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{79}}{2*-6}=\frac{-10-2\sqrt{79}}{-12} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{79}}{2*-6}=\frac{-10+2\sqrt{79}}{-12} $

See similar equations:

| -2(5n-4)=68 | | 10-x3=+4 | | x-2=-3x-3 | | 6(n+5)=8-2(4n+3) | | u-2=-9 | | b+(-16)=-9 | | x/12+600+x/8=720 | | 7g^2+g-8=0 | | 5s+20=100 | | 3(j−16)=3 | | 39+y=46 | | 5x-14+x+26=180 | | 6y+28=-2(y-2) | | 3x+12+4x=40 | | x+5.9=-1.7$. | | X/2+x/2+2x=180 | | -24r+42=181 | | 10x-50=9x=45 | | 7+9c=34 | | 5x-3+30=8x+6 | | 96=8(p+4) | | 3x+11=5x-15=180 | | 40=10(x-5) | | 21=3(r-76) | | 9+4(x+1)=25* | | -3(t-4)=18 | | 6(2x-2)-2(4x+6)=4 | | b+19=21 | | 11=a+12 | | 6x-2(x-5)=-5 | | 8x-15+7x-5=180 | | m+25/8=4 |

Equations solver categories