4(x2+3)=44

Simple and best practice solution for 4(x2+3)=44 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x2+3)=44 equation:



4(x2+3)=44
We move all terms to the left:
4(x2+3)-(44)=0
We add all the numbers together, and all the variables
4(+x^2+3)-44=0
We multiply parentheses
4x^2+12-44=0
We add all the numbers together, and all the variables
4x^2-32=0
a = 4; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·4·(-32)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*4}=\frac{0-16\sqrt{2}}{8} =-\frac{16\sqrt{2}}{8} =-2\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*4}=\frac{0+16\sqrt{2}}{8} =\frac{16\sqrt{2}}{8} =2\sqrt{2} $

See similar equations:

| 3/4e+3=21 | | 4b+14=26 | | x-75-30=6.5 | | 5b+4=4 | | -18=-8+u/5 | | 3x+7/5=4x-9/3 | | -3(2x+5)-5x=-8(x+3) | | -6+4(3x-6)=5(4x-2)-3x | | (x-3)-2=6-2(x=1) | | s+2-35-16=0 | | 95x+98x=2.895 | | 3x-14=8x+6 | | 3(r+4=15 | | -28-x+42=-30 | | 23-x*30=-7 | | 3-(4x-5)=6x | | 2x+22+10=x+23 | | x-1+x-8=15 | | x+21+10+x=13 | | 2x+35+x+24=23 | | -12+2x+12=x+7 | | 2(2x-5)=-4x(x-1) | | 2x+27+22+x=13 | | 2+x=-10+2x | | 2x-7+12=3x+1 | | 2x-14+12=x+9 | | 2x+12+2x+10=22 | | 5^(x-2)=625 | | 15q-3=57 | | 7/12b-12=23 | | 9-8p=45 | | (2x)(-4)=56 |

Equations solver categories