If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x-2)+3x=7x-3x(x-2)
We move all terms to the left:
4(x-2)+3x-(7x-3x(x-2))=0
We add all the numbers together, and all the variables
3x+4(x-2)-(7x-3x(x-2))=0
We multiply parentheses
3x+4x-(7x-3x(x-2))-8=0
We calculate terms in parentheses: -(7x-3x(x-2)), so:We add all the numbers together, and all the variables
7x-3x(x-2)
We multiply parentheses
-3x^2+7x+6x
We add all the numbers together, and all the variables
-3x^2+13x
Back to the equation:
-(-3x^2+13x)
-(-3x^2+13x)+7x-8=0
We get rid of parentheses
3x^2-13x+7x-8=0
We add all the numbers together, and all the variables
3x^2-6x-8=0
a = 3; b = -6; c = -8;
Δ = b2-4ac
Δ = -62-4·3·(-8)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{33}}{2*3}=\frac{6-2\sqrt{33}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{33}}{2*3}=\frac{6+2\sqrt{33}}{6} $
| 3x-11=5x-27=180 | | 1-6x=-2+2x | | 91-u=175 | | -2(y+5)=8-2y | | 2/7x-2=28-4x | | x+17=3x+26 | | x+6=x-10 | | 6x-5+3x+4=180 | | 14q=392 | | -9h-8+5h=-10 | | 3−(2h+1)=−2(4h−1) | | 3(x+4)+6x=12x-7 | | -5b-5=4b | | y+111+y+17+90=360 | | 6(2x+3)-4x=-6 | | -w=185=16 | | 5.78=3.9+0.4x | | 15=12+(x)/(3) | | 7a+10=3a+50 | | 4(8+3m)=128 | | (3x+13)+(9x-14)+(x+8)=180 | | 6(2x–9=4(3x+1 | | 3−–t=–3.7 | | 2.a-8=10 | | 24=-(p-8) | | r÷1000=7 | | 4n=+18 | | -8x+30=86 | | 13m=351 | | (2x−13)+(2x+18)+(6x−15)=180 | | 20=5(x-3)+7 | | 3p-15=p+15+p |