4(x+5)3-91=6x(9-x)

Simple and best practice solution for 4(x+5)3-91=6x(9-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x+5)3-91=6x(9-x) equation:


Simplifying
4(x + 5) * 3 + -91 = 6x(9 + -1x)

Reorder the terms:
4(5 + x) * 3 + -91 = 6x(9 + -1x)

Reorder the terms for easier multiplication:
4 * 3(5 + x) + -91 = 6x(9 + -1x)

Multiply 4 * 3
12(5 + x) + -91 = 6x(9 + -1x)
(5 * 12 + x * 12) + -91 = 6x(9 + -1x)
(60 + 12x) + -91 = 6x(9 + -1x)

Reorder the terms:
60 + -91 + 12x = 6x(9 + -1x)

Combine like terms: 60 + -91 = -31
-31 + 12x = 6x(9 + -1x)
-31 + 12x = (9 * 6x + -1x * 6x)
-31 + 12x = (54x + -6x2)

Solving
-31 + 12x = 54x + -6x2

Solving for variable 'x'.

Combine like terms: 12x + -54x = -42x
-31 + -42x + 6x2 = 54x + -6x2 + -54x + 6x2

Reorder the terms:
-31 + -42x + 6x2 = 54x + -54x + -6x2 + 6x2

Combine like terms: 54x + -54x = 0
-31 + -42x + 6x2 = 0 + -6x2 + 6x2
-31 + -42x + 6x2 = -6x2 + 6x2

Combine like terms: -6x2 + 6x2 = 0
-31 + -42x + 6x2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-5.166666667 + -7x + x2 = 0

Move the constant term to the right:

Add '5.166666667' to each side of the equation.
-5.166666667 + -7x + 5.166666667 + x2 = 0 + 5.166666667

Reorder the terms:
-5.166666667 + 5.166666667 + -7x + x2 = 0 + 5.166666667

Combine like terms: -5.166666667 + 5.166666667 = 0.000000000
0.000000000 + -7x + x2 = 0 + 5.166666667
-7x + x2 = 0 + 5.166666667

Combine like terms: 0 + 5.166666667 = 5.166666667
-7x + x2 = 5.166666667

The x term is -7x.  Take half its coefficient (-3.5).
Square it (12.25) and add it to both sides.

Add '12.25' to each side of the equation.
-7x + 12.25 + x2 = 5.166666667 + 12.25

Reorder the terms:
12.25 + -7x + x2 = 5.166666667 + 12.25

Combine like terms: 5.166666667 + 12.25 = 17.416666667
12.25 + -7x + x2 = 17.416666667

Factor a perfect square on the left side:
(x + -3.5)(x + -3.5) = 17.416666667

Calculate the square root of the right side: 4.173328009

Break this problem into two subproblems by setting 
(x + -3.5) equal to 4.173328009 and -4.173328009.

Subproblem 1

x + -3.5 = 4.173328009 Simplifying x + -3.5 = 4.173328009 Reorder the terms: -3.5 + x = 4.173328009 Solving -3.5 + x = 4.173328009 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '3.5' to each side of the equation. -3.5 + 3.5 + x = 4.173328009 + 3.5 Combine like terms: -3.5 + 3.5 = 0.0 0.0 + x = 4.173328009 + 3.5 x = 4.173328009 + 3.5 Combine like terms: 4.173328009 + 3.5 = 7.673328009 x = 7.673328009 Simplifying x = 7.673328009

Subproblem 2

x + -3.5 = -4.173328009 Simplifying x + -3.5 = -4.173328009 Reorder the terms: -3.5 + x = -4.173328009 Solving -3.5 + x = -4.173328009 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '3.5' to each side of the equation. -3.5 + 3.5 + x = -4.173328009 + 3.5 Combine like terms: -3.5 + 3.5 = 0.0 0.0 + x = -4.173328009 + 3.5 x = -4.173328009 + 3.5 Combine like terms: -4.173328009 + 3.5 = -0.673328009 x = -0.673328009 Simplifying x = -0.673328009

Solution

The solution to the problem is based on the solutions from the subproblems. x = {7.673328009, -0.673328009}

See similar equations:

| -1x/8-89 | | 7.4=2.1+5y | | 9y+y=90 | | 9+6lnx=57 | | 0.2x+03y=18 | | 2(n+3)+3(n+2)= | | 5x^2+3=x | | 63x(7/9)2x(1/7)3 | | f(x)=-(x^2+x-30) | | 9+6lnx=56 | | sqr(x)=10 | | 5x+3z=25 | | -2n^5+6n^5= | | (x^2)+24.1x=13.216 | | (x^2)+24.1=13.216 | | (x^2)+24.1-13.216=0 | | 3x+4-2x=13 | | 5(t-4)+3t=4(2t+5)-13 | | x(x-1)(x-2)(x-3)=1680 | | 18-4X+6X=3X+9X+8 | | 2(3x-5)=80 | | x+y-8y+13z-9x+5l+3k= | | -2(7-(-2))+5= | | (x^2)+24.1x-13.216=0 | | x+4=3(3x+4) | | 5a-7b+3= | | 45/95 | | 1771561=.33(3.14)25h | | 13*4+1=11*4+9 | | a+2c-5d=-15 | | -5-(-2)+(-6)= | | 2.5+6=16 |

Equations solver categories