If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x+3)=(1/3)(12x+9)
We move all terms to the left:
4(x+3)-((1/3)(12x+9))=0
Domain of the equation: 3)(12x+9))!=0We add all the numbers together, and all the variables
x∈R
4(x+3)-((+1/3)(12x+9))=0
We multiply parentheses
4x-((+1/3)(12x+9))+12=0
We multiply parentheses ..
-((+12x^2+1/3*9))+4x+12=0
We multiply all the terms by the denominator
-((+12x^2+1+4x*3*9))+12*3*9))=0
We calculate terms in parentheses: -((+12x^2+1+4x*3*9)), so:We add all the numbers together, and all the variables
(+12x^2+1+4x*3*9)
We get rid of parentheses
12x^2+4x*3*9+1
Wy multiply elements
12x^2+108x*9+1
Wy multiply elements
12x^2+972x+1
Back to the equation:
-(12x^2+972x+1)
-(12x^2+972x+1)=0
We get rid of parentheses
-12x^2-972x-1=0
a = -12; b = -972; c = -1;
Δ = b2-4ac
Δ = -9722-4·(-12)·(-1)
Δ = 944736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944736}=\sqrt{16*59046}=\sqrt{16}*\sqrt{59046}=4\sqrt{59046}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-972)-4\sqrt{59046}}{2*-12}=\frac{972-4\sqrt{59046}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-972)+4\sqrt{59046}}{2*-12}=\frac{972+4\sqrt{59046}}{-24} $
| 4x^2-72x-252=0 | | 2x-2=180-45+x | | 8x-4=8+5x | | 7e-13=9 | | 2x×2x=5x | | 3x-15=2.5+5 | | 4x+.25=4.5x | | 7+2g=-3 | | 2n+24=8n | | 5x-60=75 | | .6x+9.49=5.49 | | (x-2)+54=2x-54 | | -2.8x+9=14-3.8x | | 5/6(6x-12)=-4 | | Y=3x+72 | | -6a+7(-2a-4)=0 | | 84+5x+8=4x+4 | | -4(1/2x-1)=-2x+8 | | .4x+5.49=9.45 | | |v|-17=-8 | | 7(y-6)-3=-7(4y+6)-9y | | 34x-5=7 | | -7(n-4)+8=5n+15-2n | | 1/6(18-6x)-1/2(8x-4)=-5 | | |x|-16=-7 | | -42-6x=-6 | | 1/6(18-6x)-1/2(8x-4=-5 | | 175+8x=125+13 | | -4+(3x+4)=-4+5x | | -4(1/2x-1)=4x-1 | | 6-2x-1=4x+8-6x=3 | | 4(1/2x-1)=2x-4 |