4(x+3)3x=7x+12

Simple and best practice solution for 4(x+3)3x=7x+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x+3)3x=7x+12 equation:


Simplifying
4(x + 3) * 3x = 7x + 12

Reorder the terms:
4(3 + x) * 3x = 7x + 12

Reorder the terms for easier multiplication:
4 * 3x(3 + x) = 7x + 12

Multiply 4 * 3
12x(3 + x) = 7x + 12
(3 * 12x + x * 12x) = 7x + 12
(36x + 12x2) = 7x + 12

Reorder the terms:
36x + 12x2 = 12 + 7x

Solving
36x + 12x2 = 12 + 7x

Solving for variable 'x'.

Reorder the terms:
-12 + 36x + -7x + 12x2 = 12 + 7x + -12 + -7x

Combine like terms: 36x + -7x = 29x
-12 + 29x + 12x2 = 12 + 7x + -12 + -7x

Reorder the terms:
-12 + 29x + 12x2 = 12 + -12 + 7x + -7x

Combine like terms: 12 + -12 = 0
-12 + 29x + 12x2 = 0 + 7x + -7x
-12 + 29x + 12x2 = 7x + -7x

Combine like terms: 7x + -7x = 0
-12 + 29x + 12x2 = 0

Begin completing the square.  Divide all terms by
12 the coefficient of the squared term: 

Divide each side by '12'.
-1 + 2.416666667x + x2 = 0

Move the constant term to the right:

Add '1' to each side of the equation.
-1 + 2.416666667x + 1 + x2 = 0 + 1

Reorder the terms:
-1 + 1 + 2.416666667x + x2 = 0 + 1

Combine like terms: -1 + 1 = 0
0 + 2.416666667x + x2 = 0 + 1
2.416666667x + x2 = 0 + 1

Combine like terms: 0 + 1 = 1
2.416666667x + x2 = 1

The x term is 2.416666667x.  Take half its coefficient (1.208333334).
Square it (1.460069446) and add it to both sides.

Add '1.460069446' to each side of the equation.
2.416666667x + 1.460069446 + x2 = 1 + 1.460069446

Reorder the terms:
1.460069446 + 2.416666667x + x2 = 1 + 1.460069446

Combine like terms: 1 + 1.460069446 = 2.460069446
1.460069446 + 2.416666667x + x2 = 2.460069446

Factor a perfect square on the left side:
(x + 1.208333334)(x + 1.208333334) = 2.460069446

Calculate the square root of the right side: 1.568460853

Break this problem into two subproblems by setting 
(x + 1.208333334) equal to 1.568460853 and -1.568460853.

Subproblem 1

x + 1.208333334 = 1.568460853 Simplifying x + 1.208333334 = 1.568460853 Reorder the terms: 1.208333334 + x = 1.568460853 Solving 1.208333334 + x = 1.568460853 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.208333334' to each side of the equation. 1.208333334 + -1.208333334 + x = 1.568460853 + -1.208333334 Combine like terms: 1.208333334 + -1.208333334 = 0.000000000 0.000000000 + x = 1.568460853 + -1.208333334 x = 1.568460853 + -1.208333334 Combine like terms: 1.568460853 + -1.208333334 = 0.360127519 x = 0.360127519 Simplifying x = 0.360127519

Subproblem 2

x + 1.208333334 = -1.568460853 Simplifying x + 1.208333334 = -1.568460853 Reorder the terms: 1.208333334 + x = -1.568460853 Solving 1.208333334 + x = -1.568460853 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.208333334' to each side of the equation. 1.208333334 + -1.208333334 + x = -1.568460853 + -1.208333334 Combine like terms: 1.208333334 + -1.208333334 = 0.000000000 0.000000000 + x = -1.568460853 + -1.208333334 x = -1.568460853 + -1.208333334 Combine like terms: -1.568460853 + -1.208333334 = -2.776794187 x = -2.776794187 Simplifying x = -2.776794187

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.360127519, -2.776794187}

See similar equations:

| 30p=90 | | -111=-15+8x | | 4.217x-3.16=6.33-0.783x | | x*.25=7.85 | | 6/18=1/3x6 | | 8.1+3.8h-5s=-5 | | 2x+3y=1471 | | 2x+3x=1741 | | 9-7[7-(9y-7)]= | | 5x-10+3x=4(4x-4)+4 | | 5x^2+3y=10 | | ln(x+4)=10ln(10x) | | (2w^2/3t^3)^2 | | 23x-8-17x+4=20x-6-14x+11 | | 2/3q-1/2=17/6 | | x^2+3y+4y=0 | | 5+25=-5(6x-6) | | 30*e^[(-ln2)*(t/30)] | | -5v-6v=5 | | -6k-13=63 | | 3/1.67=2x | | (y^15)5= | | 7x+4y=112 | | 5/6÷68= | | z-x=g | | 5b-2a=10 | | 5(x+3)-9=-3(x-2)-6 | | 36b+4a=28 | | 24b+3a=15 | | 42b+6a=30 | | 350/1200 | | 42a+6b=30 |

Equations solver categories