4(n+7)=-44+2n(n+6)

Simple and best practice solution for 4(n+7)=-44+2n(n+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(n+7)=-44+2n(n+6) equation:



4(n+7)=-44+2n(n+6)
We move all terms to the left:
4(n+7)-(-44+2n(n+6))=0
We multiply parentheses
4n-(-44+2n(n+6))+28=0
We calculate terms in parentheses: -(-44+2n(n+6)), so:
-44+2n(n+6)
determiningTheFunctionDomain 2n(n+6)-44
We multiply parentheses
2n^2+12n-44
Back to the equation:
-(2n^2+12n-44)
We get rid of parentheses
-2n^2+4n-12n+44+28=0
We add all the numbers together, and all the variables
-2n^2-8n+72=0
a = -2; b = -8; c = +72;
Δ = b2-4ac
Δ = -82-4·(-2)·72
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{10}}{2*-2}=\frac{8-8\sqrt{10}}{-4} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{10}}{2*-2}=\frac{8+8\sqrt{10}}{-4} $

See similar equations:

| 4(n+7)=-44+2n(n+6 | | 2x˄2+5=45 | | 6(m+4)=4m-18 | | 7÷x=2÷6 | | 13y+39=13y+39 | | 4(9)-x=24 | | -7(x-7)=9x+33 | | 1x+2.9+0.2=7.7 | | 1/4r-1/4+1/4r=1/2-1/4r | | 6 | | 3 | | 6 | | -3(2x+1)=4. | | X=27x=25 | | 5(u+7)-8u=11 | | 15y+5y-y=17y | | 5/6y+1=(-1/2y+1/4) | | 1/2​=4p​ | | 4n=86 | | 4=w+8/9= | | 8c−42=13(6−9c)8c-42=13(6-9c)13(6−9c)c13(6-9c)c13(6−9c)c213(6-9c)c213(6−9c)c313(6-9c)c3 | | 2-3^(3x)=3 | | 2-3^(3x)=2 | | P=2w+6 | | x=86x+7 | | 4(x-4)-8x=12 | | 0.5x+3+125=180 | | -22-7/8x=-3/4x-29 | | 2j=0 | | 2x+5=5x()7-3x | | 11=1-x@5 | | -1/2(4x+6)=1/3(9-3x) |

Equations solver categories