4(5x2)=2(9+3)

Simple and best practice solution for 4(5x2)=2(9+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(5x2)=2(9+3) equation:



4(5x^2)=2(9+3)
We move all terms to the left:
4(5x^2)-(2(9+3))=0
We add all the numbers together, and all the variables
45x^2-(212)=0
We add all the numbers together, and all the variables
45x^2-212=0
a = 45; b = 0; c = -212;
Δ = b2-4ac
Δ = 02-4·45·(-212)
Δ = 38160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{38160}=\sqrt{144*265}=\sqrt{144}*\sqrt{265}=12\sqrt{265}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{265}}{2*45}=\frac{0-12\sqrt{265}}{90} =-\frac{12\sqrt{265}}{90} =-\frac{2\sqrt{265}}{15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{265}}{2*45}=\frac{0+12\sqrt{265}}{90} =\frac{12\sqrt{265}}{90} =\frac{2\sqrt{265}}{15} $

See similar equations:

| 14=p/5+10 | | -6(n+7)=-2-n | | (3m+4)/(6-6m)=2/3 | | 3(7-7x)=21 | | -3(x-4)=-2(x+5) | | x²+6x=5 | | -2+32x=59x | | 15=5(w-3)-8w | | 3x-0,75=x+0,25 | | 2x+10-8x=38 | | m/16=-6 | | (7z^2-31z+26)=0 | | -3x+4=2(x+2/7 | | 4n-3=9n+17 | | -10=-3n+n | | 4x-5=2(2x+1/2) | | (Y-6)(3z-4)=0 | | 2/3y+1/6y+y=11/6y | | -12-11x=-15x+8 | | 9x+21=11x | | 0=7x^2-31x+26 | | x+74=x+122 | | 3*x^2=18x | | -x2–2x–2=0 | | 20=8v-4v | | 26-31x+7x^2=0 | | x+45=3x-87 | | 6(9+2x)=198 | | 40+7.5x=150 | | (5x−4)(−3x​2​​−4x−18)=0 | | 13x^2-32x-92=0 | | d=9/18 |

Equations solver categories