4(5x-3)=7(2x+3)6x

Simple and best practice solution for 4(5x-3)=7(2x+3)6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(5x-3)=7(2x+3)6x equation:



4(5x-3)=7(2x+3)6x
We move all terms to the left:
4(5x-3)-(7(2x+3)6x)=0
We multiply parentheses
20x-(7(2x+3)6x)-12=0
We calculate terms in parentheses: -(7(2x+3)6x), so:
7(2x+3)6x
We multiply parentheses
84x^2+126x
Back to the equation:
-(84x^2+126x)
We get rid of parentheses
-84x^2+20x-126x-12=0
We add all the numbers together, and all the variables
-84x^2-106x-12=0
a = -84; b = -106; c = -12;
Δ = b2-4ac
Δ = -1062-4·(-84)·(-12)
Δ = 7204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7204}=\sqrt{4*1801}=\sqrt{4}*\sqrt{1801}=2\sqrt{1801}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-106)-2\sqrt{1801}}{2*-84}=\frac{106-2\sqrt{1801}}{-168} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-106)+2\sqrt{1801}}{2*-84}=\frac{106+2\sqrt{1801}}{-168} $

See similar equations:

| 6(4n+6)=-4(3-8n) | | -2(1-7a)=-3(3-5a) | | 3÷5x=6-7x | | 128.54=4s+15.78 | | x^2-35x-98=0 | | 8-7(7+3x)=-188 | | 3/4(7x-1)-{2x-1-x/2}=x+3/2 | | (13+6x)=(x)-7 | | 6x+2+3x+7=180 | | 6x+2+3x+7=90 | | 1.25x=1250 | | 5x-2x+7=3 | | 5x+4+x-2+3x+7=90 | | √3-x=-2x | | 7x-100=x-10 | | -7/3w-6/5=2w-3/5 | | 10x+55=7x+100 | | 3x^2+8x=300 | | 12g=12(2/3g)-1+11 | | 12g=12(2/3g-1+11 | | 3x-10=-6x+5 | | 11x=3(3x+8 | | 12^2x-10=1 | | -276=-6(8r-2) | | 3x+17/5=2/9 | | 2-7x=+16 | | 30+3t=11t | | 6.3=x-1.2 | | -5y=210 | | 7x-4=× | | (3y-5)+2=15 | | (5x-2)=(3x+10) |

Equations solver categories