4(3x+5)=5(x+4)7x

Simple and best practice solution for 4(3x+5)=5(x+4)7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(3x+5)=5(x+4)7x equation:



4(3x+5)=5(x+4)7x
We move all terms to the left:
4(3x+5)-(5(x+4)7x)=0
We multiply parentheses
12x-(5(x+4)7x)+20=0
We calculate terms in parentheses: -(5(x+4)7x), so:
5(x+4)7x
We multiply parentheses
35x^2+140x
Back to the equation:
-(35x^2+140x)
We get rid of parentheses
-35x^2+12x-140x+20=0
We add all the numbers together, and all the variables
-35x^2-128x+20=0
a = -35; b = -128; c = +20;
Δ = b2-4ac
Δ = -1282-4·(-35)·20
Δ = 19184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19184}=\sqrt{16*1199}=\sqrt{16}*\sqrt{1199}=4\sqrt{1199}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-4\sqrt{1199}}{2*-35}=\frac{128-4\sqrt{1199}}{-70} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+4\sqrt{1199}}{2*-35}=\frac{128+4\sqrt{1199}}{-70} $

See similar equations:

| 9x-12x=-6-45 | | 30+2x=2x-12 | | 9x+45=12x-6 | | 4x+5=2+3,25x | | 4x+5=2+3,5x | | 3+0,5(4x+8)=9-2x | | X+5(3x-1)=3 | | k/6.6+65.1=34.4 | | 3/n=6.4/7.2 | | 24-7x=2 | | 10x-3x=20=1 | | 16-2x=1,5x+9 | | 3m-15=1 | | 17-6x=-55 | | 6x-7x=15+2x | | 4(1+0,5x)=7x | | x/14=2x-10 | | 18x-18=12x+8 | | 7=8r-8 | | x-24-x=90.5 | | n×1=5 | | 1/3x+307/30=1/3+2(-13/3x-9/5) | | 7n+-32=3 | | 0,75(8x+4)-1=4x-14 | | 6=3r+10 | | X-2+4x-48=180 | | X/4x=-60 | | 6-9p=24 | | 0,25x=3(-0,25x+3) | | 4x-19=12-4x | | 2u=–10+u | | 0,5(7x+4)=7-1.5x |

Equations solver categories