4(2r-1)=-2r(3r+16)

Simple and best practice solution for 4(2r-1)=-2r(3r+16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2r-1)=-2r(3r+16) equation:



4(2r-1)=-2r(3r+16)
We move all terms to the left:
4(2r-1)-(-2r(3r+16))=0
We multiply parentheses
8r-(-2r(3r+16))-4=0
We calculate terms in parentheses: -(-2r(3r+16)), so:
-2r(3r+16)
We multiply parentheses
-6r^2-32r
Back to the equation:
-(-6r^2-32r)
We get rid of parentheses
6r^2+32r+8r-4=0
We add all the numbers together, and all the variables
6r^2+40r-4=0
a = 6; b = 40; c = -4;
Δ = b2-4ac
Δ = 402-4·6·(-4)
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{106}}{2*6}=\frac{-40-4\sqrt{106}}{12} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{106}}{2*6}=\frac{-40+4\sqrt{106}}{12} $

See similar equations:

| A=3.14r*r | | 5n^2+60=40n | | -8n-5=-5-8n | | -8n5=-5 | | -8=-13-x | | 7*4.9t=15+7.6t | | 2/3x+7=5/9x-11/8 | | 3000x=28000=2000x+36000 | | 3/4x+3=1/2x+4 | | 1/3+2m=1m-3/2 | | 3f+5=32 | | 2=8/f | | -5n-24=6(3n-4) | | (-1.15)×3.2=x | | 35-m=-5(7m-7) | | 2(x+8)+3x-10=5(x+1)+x-5 | | (-10+7x)=66 | | -3x+38=-4-4+20x | | 3x-5+2x+8=7x-4-x+5 | | -2(-4x+7)=8 | | -8(n-2)=40 | | 2x^2-6=50 | | 3x-5+7x=-9+8x | | -3(-8x-1)-3x=-5 | | 1.2÷0.04=x | | 11w-(2w-1)=118 | | 9+(-5+x)=-11 | | -7+5(9x+6)=2 | | -5=12p+5 | | 9+(-5+x)=11 | | 122=2(8x+5) | | 5x+8-(5x-(7(x-1)-3))=2(x-11) |

Equations solver categories