4(2)x-4(2)=1/2(2)x-4(2)

Simple and best practice solution for 4(2)x-4(2)=1/2(2)x-4(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2)x-4(2)=1/2(2)x-4(2) equation:



4(2)x-4(2)=1/2(2)x-4(2)
We move all terms to the left:
4(2)x-4(2)-(1/2(2)x-4(2))=0
Domain of the equation: 22x-42)!=0
x∈R
We get rid of parentheses
42x-1/22x+42-42=0
We multiply all the terms by the denominator
42x*22x+42*22x-42*22x-1=0
Wy multiply elements
924x^2+924x-924x-1=0
We add all the numbers together, and all the variables
924x^2-1=0
a = 924; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·924·(-1)
Δ = 3696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3696}=\sqrt{16*231}=\sqrt{16}*\sqrt{231}=4\sqrt{231}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{231}}{2*924}=\frac{0-4\sqrt{231}}{1848} =-\frac{4\sqrt{231}}{1848} =-\frac{\sqrt{231}}{462} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{231}}{2*924}=\frac{0+4\sqrt{231}}{1848} =\frac{4\sqrt{231}}{1848} =\frac{\sqrt{231}}{462} $

See similar equations:

| x2−14x+18=−19 | | 7x+10+3×=120 | | –2(y+–5)=20 | | 18(x-11)=-18x+198 | | 2(y-4)=4y+2 | | -3(n+0.25)=17.35 | | 53x-2=533 | | 26+38+x=180 | | 9x-12-5x-7=4x-5 | | 56+34+x=180 | | 41+49+x=180 | | 63+92+x=180 | | 3^x-4=9^x-28 | | x=-105 | | 8x-4=22x-6 | | 3(5-2x)=6x=15 | | 2x+3x-15°+6x+8°=180 | | x3=36. | | -5b-12=-102 | | 2x+x+2=29 | | 5+0.65x=10.0.45 | | 5+0.65x=10.0.45x | | 12=12v-6 | | 0.5+(12+11)+47=a | | 7(2b-15)=84 | | 9*(7+y)-4y=6y-66 | | x/3•3=21 | | 14+1y=3y+2 | | 40=7/5x+54 | | 12/18=3x+4-15 | | 10d−8d=20 | | (D²-2D+4)²y=0 |

Equations solver categories