4(1/3x+2)-5/6x=12

Simple and best practice solution for 4(1/3x+2)-5/6x=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(1/3x+2)-5/6x=12 equation:



4(1/3x+2)-5/6x=12
We move all terms to the left:
4(1/3x+2)-5/6x-(12)=0
Domain of the equation: 3x+2)!=0
x∈R
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
We multiply parentheses
4x-5/6x+8-12=0
We multiply all the terms by the denominator
4x*6x+8*6x-12*6x-5=0
Wy multiply elements
24x^2+48x-72x-5=0
We add all the numbers together, and all the variables
24x^2-24x-5=0
a = 24; b = -24; c = -5;
Δ = b2-4ac
Δ = -242-4·24·(-5)
Δ = 1056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1056}=\sqrt{16*66}=\sqrt{16}*\sqrt{66}=4\sqrt{66}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{66}}{2*24}=\frac{24-4\sqrt{66}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{66}}{2*24}=\frac{24+4\sqrt{66}}{48} $

See similar equations:

| (x-6)(x+8)=x² | | 11+x/9=4 | | 3y+3=60 | | 2.5x÷5=15 | | 3a+5=8a+9 | | -2y=-71 | | 7z−2z=20 | | -6=12+x/3 | | -x+14=-2 | | -x/3-8=3 | | 6-(2x-3)=5(6-x)-4x | | 6(-5x-10)=-240 | | 5-(3u-1)=14-4u | | 28=v/5-13 | | 5(m-5)+3=33 | | 1.5y+y=140 | | 13x-4=124 | | 1/2x-3=2x+3 | | (0.06x)+x=450 | | 0,5x-3=2x+3 | | 5(3x-2)=4(2x+1 | | x-1.50=3.50 | | Y=-3/4x²+7x-18 | | -36-7x=4-3x | | 2(m+5)=3(m+3 | | 2(4×-3)=4x-78 | | 3x-14=x-20 | | 48,000=1/2m•400 | | s*7-38=39 | | 4x-15=3x+13 | | 5(6x-3)=165 | | 8h=4=76 |

Equations solver categories