4(1/2x)-4(3)=4(2)-4(3/4x)

Simple and best practice solution for 4(1/2x)-4(3)=4(2)-4(3/4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(1/2x)-4(3)=4(2)-4(3/4x) equation:



4(1/2x)-4(3)=4(2)-4(3/4x)
We move all terms to the left:
4(1/2x)-4(3)-(4(2)-4(3/4x))=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 4x))!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
4(+1/2x)-(42-4(+3/4x))-43=0
We multiply parentheses
4x-(42-4(+3/4x))-43=0
We multiply all the terms by the denominator
4x*4x))-(42-4(-43*4x))+3=0
Wy multiply elements
16x^2-172x=0
a = 16; b = -172; c = 0;
Δ = b2-4ac
Δ = -1722-4·16·0
Δ = 29584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{29584}=172$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-172)-172}{2*16}=\frac{0}{32} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-172)+172}{2*16}=\frac{344}{32} =10+3/4 $

See similar equations:

| 7(4x+7)=28x-3 | | 2j+4=4j-10 | | -8-2x=26 | | 3+p=8p | | b=50+(25+6) | | (6(x-2))=(3x+30) | | 9x=16=7x+18 | | (X-3)+x=132 | | 5+3x=x+3 | | 4x=8=4x+8 | | 7v=2+5v | | (3x-3)=(6(x-10)) | | 9t+5=5t+13 | | 3(k+1)=17 | | 1/3x+1/4=-5(4/5x-5) | | x+2/7=100 | | z-345=7 | | 6(x-2)=3x-3 | | -182+11x=2x+79 | | 72+5-14c=36 | | 3c+5=2c+8 | | 6x-2(x-4)=-3+5x-14 | | {2x+4}{2}=8 | | -4+f=-10 | | 4/4+x=1/3 | | )7x–12=2 | | -x+2=-3x-14 | | -7f=-6f-f | | x+5x-10=-4 | | 5x-1(2x-1)=-14 | | -4b-3=-8-3b-5+b | | (9x+14)=(6x+16) |

Equations solver categories