4(-2x+7)+10=-2(x-3)/2

Simple and best practice solution for 4(-2x+7)+10=-2(x-3)/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(-2x+7)+10=-2(x-3)/2 equation:



4(-2x+7)+10=-2(x-3)/2
We move all terms to the left:
4(-2x+7)+10-(-2(x-3)/2)=0
We multiply parentheses
-8x-(-2(x-3)/2)+28+10=0
We multiply all the terms by the denominator
-8x*2)-(-2(x-3)+28*2)+10*2)=0
We add all the numbers together, and all the variables
-8x*2)-(-2(x-3)=0
We multiply parentheses
-8x*2)-(-2x+6=0
Wy multiply elements
-16x^2-2x+6=0
a = -16; b = -2; c = +6;
Δ = b2-4ac
Δ = -22-4·(-16)·6
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{97}}{2*-16}=\frac{2-2\sqrt{97}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{97}}{2*-16}=\frac{2+2\sqrt{97}}{-32} $

See similar equations:

| 6x+1=11×-29 | | 12n+8=26-6n | | x-4/11=2 | | x-4/9=1 | | 5(x+5)-20-28x=-110 | | 12x+4=4x+36 | | -1.6(2y+15)=-1.2(2y-4-10) | | 3(3y+19)+4y=-8 | | 80+x+20=180 | | 3(2x)=1=25 | | w=-7 | | 4(x-6+2x-3x)+4x/7=4 | | 4n+30=95 | | 5(4+x)-6x=5 | | x=3=-5 | | 28+6n+2n-16=16n+17-8n-5 | | -27=6-p | | x+20+80=180 | | -18.3+y=-24.5 | | (2x/3)+2=1/4 | | -23/4+3h=37/4 | | x=3+-5 | | 9+5f=-3+7f | | -18.3+y=24.5 | | 12n+-15=45 | | 14-6n=40 | | 6n+1+9n-5+108=180 | | 11-8x=-53 | | (11x/8)=3x+7/5 | | x*1.18=700+x | | ×+(x-15)+30=180 | | 4/x-8=16 |

Equations solver categories