If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2=27
We move all terms to the left:
3z^2-(27)=0
a = 3; b = 0; c = -27;
Δ = b2-4ac
Δ = 02-4·3·(-27)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18}{2*3}=\frac{-18}{6} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18}{2*3}=\frac{18}{6} =3 $
| 9k-29=k+27 | | 5q+3=63 | | ?x7x5=105 | | 8(h-4)=160 | | 2(4k-12)=8 | | 7x–6=2x+24 | | 2(5n-1)=8 | | 3(5k+2)=21 | | Xx30=90 | | 16-8x=11+2x | | -8x+3x=-32+36x | | 10-3e=-5 | | 2(c+9)=26 | | 2p(4-2)=40 | | v^2-5v+4/v^2-25=0 | | 4((3x)-5)=22 | | (3y)+7=22 | | 3r-7=r+5 | | 14e=56 | | (2x-10)+(3x+35)=360 | | (2x-10)+(3x+35)=180 | | -3(x+5)=2x-7 | | 3x=12=5x+4 | | c/7-2=6 | | -a+130=4a+105 | | x·(x+2)·(x+4)=48 | | 6×(3-2x)-3×(4-x)=27-2x | | x³-8x²+7x=0 | | 10x+5=5x+18 | | 2h+13=4h-9 | | 3x-3+12=4x-4 | | 3y–3/5=y |