If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-6z-24=0
a = 3; b = -6; c = -24;
Δ = b2-4ac
Δ = -62-4·3·(-24)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-18}{2*3}=\frac{-12}{6} =-2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+18}{2*3}=\frac{24}{6} =4 $
| (n-4)/9=(n+8)/2 | | 10=z+63/8 | | Y=3E-06x | | 13x-8=5+3 | | 6x+7=x-17 | | 3x+24-7x-37=2x×-34 | | 2x^2+28x+196=34 | | 10x+20x-6+5=-8x+5-6 | | x^2+14x+98=34 | | x+2x+6x=36 | | 6(8-4m)+21m+3m=7 | | -2(x+3)-4=-7(x-1) | | 8=3(4x+10)+5 | | 5(r+10)=2-(-5r-48) | | 3n+2=4n+2 | | 11x+7=6x-4 | | x2-44x+363=0 | | 8a-1=-2(4a+2) | | 3x+11x+5x+2x=105 | | 58y-12-22y+8=536 | | 3(t-3)+3=3(2t-6) | | 5x+12x-5=318 | | 0.92=5x^2-2X | | 0=5x^2-2X | | y=5(0.92^2)-2*(0.92)+42 | | 5c+2=-5-6 | | 2x(x-3)=6x+5 | | 8^r=32^12 | | 3y+1+6=3+y | | 2(3v+)=26 | | 3.442(9.7-4.8x)=61.2 | | 8z+3=4z+5 |