If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z(z-7)=0
We multiply parentheses
3z^2-21z=0
a = 3; b = -21; c = 0;
Δ = b2-4ac
Δ = -212-4·3·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-21}{2*3}=\frac{0}{6} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+21}{2*3}=\frac{42}{6} =7 $
| x-4.2=2.8 | | 9/18y-4=2/18y | | 0=10t-5t² | | -3z^2-21z=0 | | 0.4y+0.8*4=0.5*y+4 | | 7s+32=158 | | -7-4x=-53 | | c=75+24 | | 0.4y0.8*4=0.5*y+4 | | 4(9r+5)= | | 6x-4+x+17=90 | | 4-3x+6x+14=3- | | a÷3+7=16 | | 7x+15=1x+13 | | 1x+2=7.50 | | 7x+15=1+13 | | x=52x^2-3x+4x-7 | | 3*x+7/2=19 | | t/4-3=154 | | 7x+15=x+13 | | x=5/2x^2-3x+4x-7 | | (x+40)=(3x-20) | | 15-5*365x=1840 | | 5x-3=4x+21 | | 0.5x+x-10+0.75x+3+x+5=180 | | 33=45-w | | 2x(-10°)+x+20°=180° | | 17=3-1v | | 84.05=5k | | 0.5x+x-10+0.75+3+x+5=180 | | 3x+1=34-2x | | 7=5y-13-4 |