If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=507
We move all terms to the left:
3y^2-(507)=0
a = 3; b = 0; c = -507;
Δ = b2-4ac
Δ = 02-4·3·(-507)
Δ = 6084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6084}=78$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-78}{2*3}=\frac{-78}{6} =-13 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+78}{2*3}=\frac{78}{6} =13 $
| n2-3=39 | | 4l/5=16 | | 5x-3=32x+1 | | 2x+10=6x12x | | x+x*0.2=6993 | | 7^5x-2=1/343 | | 1/343=7^5x-2 | | (50+x)+x=180 | | 2x+4=−4 | | x/19=2/38 | | m^2+11m=42 | | |15x-10|=25 | | X/5+x/6=x-7 | | 0.4n+6=n | | 7x+3=57 | | 10-2p=2+p | | x-6x+15=5 | | -4(2x-8)=16 | | 2(x^2-6)=3(x-4) | | p+19÷14=2p | | X+1/x=25 | | (2x×100)+(3x×50)+(5x×10)=10,000 | | x+x*0.2=9179 | | x+3x/4+3x/5=47 | | 6`2-(x+3)=45 | | 51/57=x/20 | | 7(3-d)=14 | | H=3+36t-16t | | |5-3x|+4=15 | | 14x-8+24=36+6 | | 7x+2x=49+3x- | | 2n-12=3n-15 |