If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=192
We move all terms to the left:
3y^2-(192)=0
a = 3; b = 0; c = -192;
Δ = b2-4ac
Δ = 02-4·3·(-192)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*3}=\frac{-48}{6} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*3}=\frac{48}{6} =8 $
| 10.01x+11.01(100-x)=1081 | | 2n+4=n+8 | | -2x-6-7x+21=12x-18-6x+3 | | 5x^2-85x-36=0 | | 76a/3=20 | | 15x-2=9x-4 | | 3p+p-3=-11+2+9p-2p | | a=-69 | | a=-950 | | 20+2x+4=12x+4 | | a=-50/19 | | 7(x-15)=77 | | S^+10s+9=0 | | 11p/6=11 | | X^+3x^-2x=7 | | 2x^2+3x⁴-2x=7 | | t²-14t=-15 | | 2-4x+11=x+14-4x+33 | | 5(1+2m)=1/2(10+20m) | | -48=2x+8 | | 7x-9=-2x+1 | | 3(3x+5)=-4x+41 | | 2x+17=125 | | 9-2x-1=7x | | 7z-18/7=-3/7 | | {10.01x+11.01(100-x)}/100=10.81 | | C^+14c=32 | | x+4+3x-31=37 | | 500+b=350+2b | | 3s=42,s= | | (x-4)²=69 | | 2x²-25x-50=0 |