If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-4y+1=0
a = 3; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·3·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2}{2*3}=\frac{2}{6} =1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2}{2*3}=\frac{6}{6} =1 $
| 28=x–5 | | -2(6x+12)-4=-4(-3x+7) | | 5(x-3)=-5x-5+40 | | -6(n-4)=42 | | 4x-6+3(2-x)=2x- | | 7f-63=63 | | 4(x+5)-3(2x+3)=18 | | -9w+9=-7-5w | | n/2-2=-10 | | x2=95 | | 5x+10=12.8 | | 2+3(x-4)=8 | | -2(6x+12)-4=-4(-3x+7 | | 14=j+-3 | | -49-5r=-8r-16 | | X+8÷2=3x-1 | | 20=3f+11 | | −7w−10=−8w | | 11(n+2)=22 | | 0.1a+0.25(30-a)=15 | | 8x-3x+102=8x+51 | | 2/3x-1=3/4x-2 | | 3(8x+8)=168 | | 15y-6=3(5y+) | | 7000=125x+475 | | 7t=6t-10 | | (2x+12)=(x+18) | | -2r-15=-8r+57 | | 5n-40-3n=10 | | 4x+3=4(x+1)-1 | | -2=13+k | | (3x+1)°=95 |