If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-40y+40=0
a = 3; b = -40; c = +40;
Δ = b2-4ac
Δ = -402-4·3·40
Δ = 1120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1120}=\sqrt{16*70}=\sqrt{16}*\sqrt{70}=4\sqrt{70}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{70}}{2*3}=\frac{40-4\sqrt{70}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{70}}{2*3}=\frac{40+4\sqrt{70}}{6} $
| -5x+13=5x+33 | | (0.4+x)^2/(0.35-x)^2=4 | | 6x/16-1/2=x/4+5x/8 | | 3y2+40y+161=0 | | 6n^2+6=486 | | 8q+6=4q-15 | | (x+5)2-20=0 | | (7y+5)-(4+6y)=7 | | 6+6(2t–1)=3+12t | | 1=x-16 | | 3y+5=110 | | 3=g÷20 | | w+11=3 | | w+11=13 | | 5/6-n=5 | | v+8=3v-72 | | P=8t2+7t-9 | | v+87=2v-36 | | 14n+4.2=37.2 | | -5+x=-4x | | 5+3(2x+1)=14 | | 2=9-t | | 2u^2+2u-8u^2-2u=0 | | -21-z=30 | | 16x=16-13/x | | -x´+10=x+4 | | -6x-6=-10-2x | | 8^(2x+1)=16^(2x-3) | | (x+4x=90) | | u=3u-63 | | 20-5z=4-3z-16 | | -6x-6=-10-3x |