If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+4y=20
We move all terms to the left:
3y^2+4y-(20)=0
a = 3; b = 4; c = -20;
Δ = b2-4ac
Δ = 42-4·3·(-20)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*3}=\frac{-20}{6} =-3+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*3}=\frac{12}{6} =2 $
| T=0.15(d–7,550)+755 | | 14+5=-5x-(-3x+15)+5 | | x/1.2=0.06 | | -11+15-12s=-10+2s | | 2=x-4/2 | | x/1.2=4.32 | | x+7+3x=11 | | 11x/8=x+3 | | X+2-6x=2+2x+3x | | 10x/7=x+3 | | x/1.2=14.4 | | 7+3w=-3-7w | | -9=6m-(2-m) | | 5x+10x-3x+x-9x=-64 | | 12x^2+18x+3=0 | | 5x+6-2x=7x-2(5) | | 4(-4+x)=5x+0.50 | | -2x+10+x=2 | | 17-9x=-6x-12 | | P(x)=7x2+3x+5 | | -3/4y+4=-28 | | −−4+−6y95y=−3−y82 | | -18=3y+6 | | 33y-5y+10=36 | | 8n+7n=-16+n | | 2(x-6)+7=-8 | | x/1.2=10.8 | | 117=7x+2x+9 | | y+6=(y-1)(5y+3) | | T=27=4t | | 3/5x-3=2.1/4 | | x/2-10=-8 |