If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+49y+16=0
a = 3; b = 49; c = +16;
Δ = b2-4ac
Δ = 492-4·3·16
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2209}=47$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-47}{2*3}=\frac{-96}{6} =-16 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+47}{2*3}=\frac{-2}{6} =-1/3 $
| F(2x)=3x^2+1 | | -4r+4r=8-4r=3r | | -10c+9+6c=-67 | | 2=1.2+b | | 162=(x+2)(2x+4) | | 6n=8n-64 | | 3q-38=5q | | -8n+12=12-7n | | x+5 2−x+3 6=1 | | x^2-128x+256=0 | | -8(3x+6)+22x=32 | | 0.3(30)+0.25x=0.1(30)+0.3x | | 3(x+3)+1=6x-3(-2+x) | | x+37=47 | | 44+c+15=6c-38 | | u-38=7 | | u+2=-5 | | 43+a+42=10a-2 | | 5x^2+15=46 | | 36+8w-34=6w+37 | | 7.2-4c=3c | | p=2*8+2*14 | | −9x+54=72 | | y/5+10=22 | | (-4+5i)(5-i)=0 | | w+31+45=5w-39 | | 5g+4(-5+3g)-1=g | | 21=y/2-17 | | 42+2a-16=a+49 | | 16x-15=11x-12 | | 6x+6+10x=3+16x+13 | | 3x2-8=32 |