If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+32y+12=0
a = 3; b = 32; c = +12;
Δ = b2-4ac
Δ = 322-4·3·12
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{55}}{2*3}=\frac{-32-4\sqrt{55}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{55}}{2*3}=\frac{-32+4\sqrt{55}}{6} $
| 8/7=v/5 | | -2+x-6=38 | | 5x-2x+4=62-2 | | 0=4-16q+24q2 | | (2x-30)°+(x+60)°=90° | | 5x-2x+4=62-2 | | 1+-2/1+2x=13 | | -2+x-6x=38 | | 5x=80-32+47 | | 5x=80-32+47 | | 2a-1=14-a | | 2x-13=-14x+7 | | (0.8-x)/(1-x)=0.2 | | 3x-80=55+7x | | -1/3d+3/4=11/4 | | 3/1+9/1=3x+9 | | 8y+85=90 | | 6x+15=x+135 | | -36-7n=7n-6(1+4n) | | 3x+X+5=66 | | -(2y-3)=18 | | 2(6y+1)=4 | | 4g+9=5 | | 5(2x-8)=8 | | 9−2n=15 | | 9x-53=-76 | | 3x-8=25 | | 48x-42x=84000 | | 5x+3(x-4)=60 | | (6x+4)+(2x-10)=90 | | 6x+4(-3+3x)=1-x | | 2(2)-3y=1 |