If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+24y=0
a = 3; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·3·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*3}=\frac{-48}{6} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*3}=\frac{0}{6} =0 $
| 4/5x+50=222 | | 9v+4=40+3v | | 5(2-x)=7(x+4) | | -3x+12=5x-8 | | 4n+2=-13n | | 4n-2(n-2)=-11 | | 3=3w-15 | | −5x=3x−32 | | -6=-4x | | X+70+x+85+45=180 | | 140+10=95+19p | | -24-x=5x | | 2x-(x+3+11)=-24 | | 19x+16=4x+151 | | 4x^2-4=-138 | | -4y+16=-12-11y | | 6=10-d | | 24x-22=-4+20x+4x | | 0.5-2=0.2x+7 | | 6=2/3-p | | 18x-8x=10 | | 4x-8=-2(3x+2) | | 4g-g+7=28 | | 28-8j=-4j | | 20=10+5n | | 37-2x=-3+3x+30 | | 0.33(p+1632)=726 | | 95-3x=180 | | -11-5x=-6x-3 | | y.5y+6=46 | | 3(k+5)=-2(3k-12) | | -14u-15+6u=-7u-3 |