If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+24y+21=0
a = 3; b = 24; c = +21;
Δ = b2-4ac
Δ = 242-4·3·21
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-18}{2*3}=\frac{-42}{6} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+18}{2*3}=\frac{-6}{6} =-1 $
| Y=50x³ | | 7^(x+2)=49^3 | | 5x+11=35–3x. | | 46-x=×-4 | | 5+×=2-2x | | y/9=12.3 | | 7y2-35y+42=0; | | |5+×|=2-2x | | 4(x–1)=x+5 | | 6x-10=2x-34 | | x+2÷5+x-1÷2=2 | | k-12=10 | | 10x+4x=1 | | 219=3-w | | 2x²+6=20 | | 9f+4=31+18f | | 3x−56=12−x+48 | | 4(x–1)–7=2(4x+3)–3(2x+1) | | -2x+6=5x+30 | | 3^(2a+3)=2187 | | 12-7k=4+k | | 4y-6=3y+7 | | Fx=2x+9 | | 15x–5(x+4)=20 | | x=55/5 | | 43+x=63 | | x/5+7.2=-2 | | x/5=7.2 | | x+5+7.2=-2 | | 1.4b+3b=6 | | 45÷5m=3 | | 0,99x²-15x+12=0 |