If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+12y-15=0
a = 3; b = 12; c = -15;
Δ = b2-4ac
Δ = 122-4·3·(-15)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-18}{2*3}=\frac{-30}{6} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+18}{2*3}=\frac{6}{6} =1 $
| -5x12=-3 | | 2^x/3=999 | | (7x-44)+(4x+4)=180 | | 175m-125m+43,200=46,125-175 | | -2y+20=-15+3y | | (x-1)(x+3)+500=517+x | | 15+13c+19=9c-18 | | 8x-21=-31 | | 7+9x=15x+5 | | 13=f+4 | | 21000=3400x+600 | | 0.8t+0.19=2t-1.91 | | 2x+2(3x+1)=42 | | 189=-6x+3-7x-18 | | 6-z=4z-4z+2 | | 16x-8x-12=0 | | 4x-8x-12=0 | | x^-2-16=54 | | 0.4t+0.11=2t-2.69 | | (5r+30)/15=(2r-8)/2 | | 3x/16=12/32 | | 36=-4d | | n,7n+5=19 | | 5r+30/15=2r-8/2 | | F(1)=3x+1 | | Y=36(x+4) | | 0.4t+0.11=2t-2.79 | | 7x+8=2x+1 | | 0.95x-5.6=0.65-0.3x | | 125m-75m+45,225=43,875-175m | | (x-8)+11=20 | | 2=4x-22=6 |