If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+11y+4=0
a = 3; b = 11; c = +4;
Δ = b2-4ac
Δ = 112-4·3·4
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{73}}{2*3}=\frac{-11-\sqrt{73}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{73}}{2*3}=\frac{-11+\sqrt{73}}{6} $
| x=12/6*8 | | x=16/8*6 | | x=30-20-75 | | x=60-20-75 | | x=-80+85+40 | | x=20-35+15 | | 30+5+20+5y=180 | | x+12x+3=38 | | 2x+10+2+90=180 | | 3x-x=2x+4x+12 | | 4-(y-1)+5(y+1)=100 | | x/2=-x/2+4 | | e+12=2 | | 4.4=c-5.6 | | 2x+10+6x-12+18=180 | | 18+2x+10+6x-12=360 | | 18+2x+10+6x-12=180 | | 5x(x-4)=3x-29 | | 9z/8+2=56 | | 60+5+40+5y=180 | | 4x+x+15+90=180 | | 4x+x+15+90+90=180 | | x/3+x/4=-3 | | 20=10x+8 | | 2(4x+3)=10x-25 | | (16^5)*4(x^2)=(256^(2x))/16 | | 3p–5p+6p–3p+4p= | | 4(x-3)+2=2(x-6) | | 3(1-2y)+3y=16-y | | 8(x-7)=10(x-6) | | 20x-40=10x+60 | | 6(x-2)=4(x-5) |