If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y(y+4)=0
We multiply parentheses
3y^2+12y=0
a = 3; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·3·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*3}=\frac{-24}{6} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*3}=\frac{0}{6} =0 $
| 13v-7v=54 | | 76=6x+10 | | 7=3c−2 | | X=-5y+39 | | 3(5x+10)+10=6x-1(x+10) | | y=-(2/5)+2 | | 54=50+x | | 80x+6x-16=80 | | 20-2x/3=4x+7/5 | | 7x+3=x−3 | | 27=b*9 | | a1=18 | | 7x−3=x−3 | | 3u-9/5+6u-6/7=9 | | 3(2x+4)=1/3(3x+9) | | 5y-7=3y+17 | | 2x+7x=26 | | 2x+7x=35 | | 5y-2=6+y | | 7x+12=15x+8 | | H=−16t2+98t+4t=5 | | 2x+43+6x-1=180 | | H=−16t2+98t+4 | | 4c-8-2c+5=2c-3 | | 12w=3w+72 | | 3x+5=2× | | 5(w+2)-7w=16 | | z+3.5=42 | | (5z-59)=104 | | 2x;x=5 | | 7e-4=31e= | | 2(6x)+31=19x-36 |