If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x=(-2/5)(4x-10)
We move all terms to the left:
3x-((-2/5)(4x-10))=0
Domain of the equation: 5)(4x-10))!=0We multiply parentheses ..
x∈R
-((-8x^2-2/5*-10))+3x=0
We multiply all the terms by the denominator
-((-8x^2-2+3x*5*-10))=0
We calculate terms in parentheses: -((-8x^2-2+3x*5*-10)), so:We get rid of parentheses
(-8x^2-2+3x*5*-10)
We get rid of parentheses
-8x^2+3x*5*-2-10
We add all the numbers together, and all the variables
-8x^2+3x*5*-12
Wy multiply elements
-8x^2+15x^2-12
We add all the numbers together, and all the variables
7x^2-12
Back to the equation:
-(7x^2-12)
-7x^2+12=0
a = -7; b = 0; c = +12;
Δ = b2-4ac
Δ = 02-4·(-7)·12
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*-7}=\frac{0-4\sqrt{21}}{-14} =-\frac{4\sqrt{21}}{-14} =-\frac{2\sqrt{21}}{-7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*-7}=\frac{0+4\sqrt{21}}{-14} =\frac{4\sqrt{21}}{-14} =\frac{2\sqrt{21}}{-7} $
| 10=n/18 | | 6(x+3)+3x=15 | | 4^2=2*2x | | -6u-36=42 | | 5x2-15x=10 | | F(2)=2.5x-10.5 | | 3-2x=29x | | 2=m/17 | | v-17=-13 | | 0=x^2+72x-3120 | | -3k+8=32 | | 2x+3x−4=6 | | -n-6=-30 | | 0.04w=1.4 | | 9x(4x-6)=17+2(3x+8) | | -6=1-3x-4x | | 3=-3(x-9) | | (8x+6)+(7x+24)=180 | | 4(2x-1)=x-3 | | 55=17^(x) | | 10x+1=15x-9 | | Y=0.1-0.005x6 | | (6x+3)=90 | | 10+8r=2r-14 | | -5x+6+4x=3x+2(4x-2) | | -12=4(n-1) | | 3x-8x+2=x-3=5 | | h/7+4=15 | | 4z+z-1=9 | | -6.5=p-3.9 | | 9(2x−3)+5x+17=-4x-10 | | 9(11-n)=3(3n-9) |