If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=x1
We move all terms to the left:
3x^2-(x1)=0
We add all the numbers together, and all the variables
3x^2-1x=0
a = 3; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·3·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*3}=\frac{2}{6} =1/3 $
| 4(x+3)-5=-3x+2 | | 3x(x+2)=1+4x | | 2(x–3)+2x=90 | | 16^(x-5)=4^(4x) | | 16^(x+5)=4^(4x) | | -11x+5x+7=-2x-11 | | 3x+7÷5=5 | | 11x+5x+7=-2x-11 | | d/7+8=2 | | 5x1.5=7.5 | | 3x+5x+4-2=0 | | 10-7=35x+8 | | −15(x−3)=−30 | | 11y-7y=98 | | 5x^2-380x+80=0 | | 131=-4(1-4x)+7 | | 0.15(y-0.2)=2-0.5(1-y) | | P=85p= | | x^2+1.25x-20=0 | | P=85p | | 4x-2(x+1)=9 | | 392=8(1-6a) | | 1/2x+1/2x=9 | | 32–12n=2n+3 | | 5x+3x+(2x+40)=180 | | -6(3x+6)=-162 | | 6(3x+6)=-162 | | 3x+6)=-162 | | (6x+4)/2= | | –6f−9=–7f−6 | | 1-3x=19 | | 3x−10=8x+5 |