If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=11
We move all terms to the left:
3x^2-(11)=0
a = 3; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·3·(-11)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*3}=\frac{0-2\sqrt{33}}{6} =-\frac{2\sqrt{33}}{6} =-\frac{\sqrt{33}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*3}=\frac{0+2\sqrt{33}}{6} =\frac{2\sqrt{33}}{6} =\frac{\sqrt{33}}{3} $
| 2x-3(3x+13)=6 | | 4(-x+7)=-12 | | 2x+3(3x+13)=6 | | 2x-3(3x-13)=6 | | -12=2/5w | | −12=-5/2w | | 2x+3(3x-13)=6 | | -2+3d+8=0 | | 2x-3(3x-1)=-6 | | r-6r+7=0 | | –38=x+15 | | 12a+3-6a=9 | | (7+w)(4w-3)=0 | | 234-84÷aa=7 | | -4(c+2)=-24 | | M=Q+3p | | 234-84÷a,a=7 | | 5n-32n=15 | | 7x+4-4x-2x=12 | | 5x-2-3x-6x=2 | | 50x+40=10x+160 | | 2x+2x-5x=5 | | 4(2x−8)=−4x+4 | | 3x+5x-6x=8 | | x–(–45)=–34 | | F(n)=8n-351 | | 5×3x=43 | | 3a-1/a+3=8 | | 9=-(2x-3) | | 2(-x+5)=-18 | | 33=x/6+9 | | 75-130.375*x-0.25*x^2=0 |