If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=1080
We move all terms to the left:
3x^2-(1080)=0
a = 3; b = 0; c = -1080;
Δ = b2-4ac
Δ = 02-4·3·(-1080)
Δ = 12960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12960}=\sqrt{1296*10}=\sqrt{1296}*\sqrt{10}=36\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{10}}{2*3}=\frac{0-36\sqrt{10}}{6} =-\frac{36\sqrt{10}}{6} =-6\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{10}}{2*3}=\frac{0+36\sqrt{10}}{6} =\frac{36\sqrt{10}}{6} =6\sqrt{10} $
| -49=-3n+2 | | 4/9w=10 | | -8x^2-54x-81=0 | | 1152=-16t^2+288t+0 | | (27+12n)=-31 | | 6(q-)-3(4-q)=0 | | 5/2=3/4z+1/2 | | 9x-2=84 | | 9(x+3)-14=58 | | 3x+5+8x-12=37 | | n-61=-75 | | r/17=-10 | | 1/2(2r+8)=9 | | 9v^2+43v-10=0 | | 4x+(4x-4+1)=3557 | | 3.6/3=b/25 | | (9+h)*10=210 | | -15+3c=-42c+35 | | -6(v+4)+3v+6=8v+10 | | 4x–4=9x+1 | | n/19=-12 | | 6x-8x+5=-2(2+x)+7 | | k+17=18 | | 7/8*8/7=x | | −6(v+4)+3v+6=8v+10 | | -15p-4(4-6p)=4(p-6)-27 | | -30=-5+8z-24 | | 5/8x+13=8 | | 0.2x+0.3=11 | | 32/(y+3)=8 | | 2/3x+5=1/2x-1 | | 9a+15=-10a-7 |