3x2/3+135=183

Simple and best practice solution for 3x2/3+135=183 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2/3+135=183 equation:



3x^2/3+135=183
We move all terms to the left:
3x^2/3+135-(183)=0
We add all the numbers together, and all the variables
3x^2/3-48=0
We multiply all the terms by the denominator
3x^2-48*3=0
We add all the numbers together, and all the variables
3x^2-144=0
a = 3; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·3·(-144)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*3}=\frac{0-24\sqrt{3}}{6} =-\frac{24\sqrt{3}}{6} =-4\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*3}=\frac{0+24\sqrt{3}}{6} =\frac{24\sqrt{3}}{6} =4\sqrt{3} $

See similar equations:

| 3(x+1=18 | | 0.6r=4.5 | | –6b=–8b+8 | | -10-4r-10=10-7r | | 7y-15=-6y+108 | | 4x+6/7+8=10 | | 7=3-b | | 72x-8+7x=30 | | 6(3x+5)=10x-10 | | 5x+13=29 | | 3x-12/4=-6 | | 6n2-9=303 | | 8/11.5=14/x | | -2(11-12i)=-4(1-6i) | | -0.3v-3.74=-7.73-6v | | 0x+0=-24 | | 96x-72=12(8x-6) | | 5(−2n+4)+2(n+3)=Y | | 8x-3=4x-3= | | –5c+–5c−–14c+c=15 | | F(x)=-19+4x-5 | | –3(x–2)+5x=4 | | 6x2-2=118 | | -5x+3(x+1)-4x=-15 | | 3j+5=5j-9 | | `7x-0.15=2x+0.6` | | x-8.2=-9 | | 4x+3-x=8 | | -7n+7=-8n+9 | | 8a2-6=402 | | 12x-22+10x-6+7x+18=360 | | 6c+2(c+3)=-2 |

Equations solver categories