If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-9=0
a = 3; b = -4; c = -9;
Δ = b2-4ac
Δ = -42-4·3·(-9)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{31}}{2*3}=\frac{4-2\sqrt{31}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{31}}{2*3}=\frac{4+2\sqrt{31}}{6} $
| -86-15x=-7x+74 | | x-600=-210 | | 3x-47+2x+8=180 | | -8.4(x-3.5)=25.2 | | 90x=63.9x100 | | -86-x=6x+82 | | -9+5b=-4b | | 3(-2x-2)=-18 | | (2x^2)=6x | | 7(6+x)=0 | | 4x-129=8 | | 6*2x=6*2x+2x+2x | | 8+v=2v | | x2+-6.5x=46 | | 35=-2(x+7) | | -18s+18-14=3-19s | | 3x-x-6=18= | | -18s18-14=3-19s | | -(5x+7)+1=-5-5 | | 90(x)=63.9(100) | | M=2/5+n | | v+17/18=5 | | 2x-139=165-14x | | 14m+20=12m-4 | | 6a-18=5a+10-8 | | 2(x-8)+x+(x-8)=120 | | 4(x-9)+7x=10x-7 | | v+1718=5 | | 4/7n=200 | | 13-19p=-8-15p-19 | | 24=10x+7 | | 4v+9=27 |