If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-64=0
a = 3; b = -4; c = -64;
Δ = b2-4ac
Δ = -42-4·3·(-64)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-28}{2*3}=\frac{-24}{6} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+28}{2*3}=\frac{32}{6} =5+1/3 $
| -12-12x=36 | | .25=q+20 | | -2(3q+5)=2q+6 | | 2-5h=19 | | 57.5=20+0.24r | | 12-12x=36 | | 10x10x10x5=7 | | u-4.64=5.29 | | 2-6w=14 | | 45-5+100=12x-5x | | 28=w/2-14 | | 3a-7=-10 | | 3x-5-5x=9 | | 7+3x=3/4x+1 | | 5h=19 | | 8(x-2)+3=-2(x-4)-11 | | 9=8+n/20 | | 23+10+33x=99+33 | | 42=4/5m+18 | | 5/6+3j=2/5 | | 17+3f=14 | | x+18=-24 | | -4g+6=30 | | 2(15x+14)=2(9x+7)+3(3x+11)+2 | | 18y–21=15y+3* | | 5y-8=5 | | 32=-8(10+b) | | 1/8a-4=2 | | b/2+8=-2 | | 18=6+3(2x-5 | | 4(x-2)=4+8 | | 5=10+x6 |