If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-15=0
a = 3; b = -4; c = -15;
Δ = b2-4ac
Δ = -42-4·3·(-15)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-14}{2*3}=\frac{-10}{6} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+14}{2*3}=\frac{18}{6} =3 $
| 9x+17=73 | | 4(x+1)-3(x+2)=x-27 | | 10(3.92+1.4m=2.6+-0.8m) | | 6m(m+4)=m−15 | | 3(x-4)+19=-5 | | 1.3x=−1.95 | | 3/5=7.5/x | | -4m-20+20-1=1 | | 9(x+6)+6=-3 | | 88^(x)=29 | | 10x-5x+3x=7-8+7 | | 4118=-22a | | 200=1.03^x | | -0.25+(5m-5m)-1=1 | | 2a-2+8=22 | | 8×+4y=2 | | 7x+3x+2x=28-7 | | (0.25)^x=15 | | -4+(5m-5m)-1=1 | | 35=u/4+9 | | 3x+19=11x-2 | | 6x-60=5x+4 | | 11/4p=-12/3 | | (2+x)+0=5+x | | -15x(3x-31)=2(x-3)-9 | | 9(x-17)=-16 | | 2x‐3=‐(4x+9) | | -4m+(5m+5m)-1=1 | | 9x-17=-16 | | 5x‐9=3x‐12+5x | | -5b+5b=-(-8b-3)-3(2b-3) | | −6x=−7.2 |