If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-48x+185=0
a = 3; b = -48; c = +185;
Δ = b2-4ac
Δ = -482-4·3·185
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-2\sqrt{21}}{2*3}=\frac{48-2\sqrt{21}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+2\sqrt{21}}{2*3}=\frac{48+2\sqrt{21}}{6} $
| 10+8x=106 | | 2x-11=19-x | | 4x-4=22-3 | | 4(z+3)-2=34 | | 9x2+9x+2=0 | | -4x2-2x-24=0 | | 3/5y+7=1/2-y | | 9b^-72=0 | | y/16=1/48 | | -4x2+200=0 | | 40.n=1200 | | 5a/3=25/9 | | 104x+1040=126x-280 | | n+40=1200 | | X|2-3x|4+5x|6=21 | | 1200n=40 | | 3^2-21x-6=0 | | 2x=4x+ | | 16t+16t=112 | | d²-49=0 | | 5*3^2x=10*2^x | | (3x+5)=(2x+18)=(2x+17) | | z/9=100 | | (s+2)^2+(2s+2)^2=4 | | y-27/5=9 | | 3b^-48=0 | | 0.5x+9=460 | | 8y+5=2(y-3)+11 | | s-6=8.5 | | (x^2-6x+11)^10=1024 | | -3(x-5)+2(x=+2)=15 | | s−6/2=8.5 |