If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-42x+78=0
a = 3; b = -42; c = +78;
Δ = b2-4ac
Δ = -422-4·3·78
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{23}}{2*3}=\frac{42-6\sqrt{23}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{23}}{2*3}=\frac{42+6\sqrt{23}}{6} $
| 5u-6=9+30 | | 12x+12=2x+34 | | 3{x-4)2+1=109 | | 3(3k-2)-5(3k-4)=26 | | 79.3-2=m | | -12x+7=5-2x2 | | 5u+6=30 | | -104=-8j | | 9x+24=3x-9 | | 7=c+9 | | 50×30z=250+10z | | 25+14=r | | 3x+12=2(x-12)-1 | | 3x+12=(2x-12)-1 | | 12+3x=2x-11 | | 3x=12(2x-1) | | 68=1/5(20x)1/5(500)+2 | | 27=5x-6+4x | | c/9-20=-6 | | -3(x+5)=-4(2x+5) | | 7z=3/4 | | 4x+7=3x+12= | | 1.21=1.1^x | | (3x)(2x+4)=x | | 3k^2-11k+8=0 | | 12/n-8=-4 | | (3x-16)(x-1)=-4 | | 5n-4+n=20 | | -7+h=15 | | 2y-1=1y | | -34=-5n-4 | | 6s−5s=6 |