If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-41x+69=0
a = 3; b = -41; c = +69;
Δ = b2-4ac
Δ = -412-4·3·69
Δ = 853
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-\sqrt{853}}{2*3}=\frac{41-\sqrt{853}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+\sqrt{853}}{2*3}=\frac{41+\sqrt{853}}{6} $
| -4(u-8)=-9u+2 | | 7x²-6x-145=0 | | 13y+10=94 | | 6n+4=5 | | -4x+2(x-6)=4 | | 4^x=135 | | 8(4s+9)=328s= | | 3x(4x+7)=22x-4 | | 3(x^2-9)-3=-9 | | 5(3-2v)-1=134 | | -8x^2-13x+6=x | | -8(n+41)=-96 | | 5(x^2-6)+5=5 | | x/4+18=22 | | 5w2+14w–3=0 | | 2=4(3+h) | | 2(x^2+5)-7=7 | | 49+2t=-45 | | -4h+3.6=7.8 | | 12-x^2=-3 | | 29=-5x+10 | | 14+9v=50 | | y/0.3=16 | | 2(1+7m)=142 | | 8(x+4)=62.2 | | 1.5+0.5=0.75x | | 7a+0.5=11 | | 6d^2-13d-8=0 | | (n+6)=8 | | 2x2−3=11 | | 4(2l+10)=104l= | | 2(n+6)-3=4 |