If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-40x+48=0
a = 3; b = -40; c = +48;
Δ = b2-4ac
Δ = -402-4·3·48
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-32}{2*3}=\frac{8}{6} =1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+32}{2*3}=\frac{72}{6} =12 $
| (x+22)+(3x)=90 | | x−10=2 | | 15x+75=25x | | -1=3x-1/2x^2 | | 5x-65=-15 | | (x+48)+2=(2x)=90 | | X+y+2=51 | | √8x+17=7 | | 3+2x=51 | | 9x+15+6x+15=180° | | x^2-x-16002=0 | | 2= 7/2(5x+6) | | x+48=12x | | x+48=x+12 | | x+48=×+12 | | 48+x=12+x | | 2x+(x-2)=24 | | 2(a-5)=21 | | 3x+4=7x+22 | | 3^2x=40 | | 4x-2/2=21 | | -5-6x=-6-5x | | -2-8x=18-4x | | -1-4x=-13-1x | | 8x+4=6x+0 | | 1-2x=31-7x | | 8(5x+8)=4(8x+34) | | 10(8x+6)=5(6x+32) | | 7^5-x=10 | | 300x+X2=6400 | | 2.4^1.2x=7 | | 10(7x+6)=5(6x+36) |