If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-40=7x
We move all terms to the left:
3x^2-40-(7x)=0
a = 3; b = -7; c = -40;
Δ = b2-4ac
Δ = -72-4·3·(-40)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-23}{2*3}=\frac{-16}{6} =-2+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+23}{2*3}=\frac{30}{6} =5 $
| 3m/6-2=3 | | -10-2d=8d+10 | | -4x-13=-5x+123 | | -1+6n=n-7+6n | | (35-4x)/2=(8x+9)/3 | | 20=10/2s+20 | | 3v2-17v+28=8 | | x-6+6x=15 | | -5^2s=-1 | | 4(x-2)-20=-44 | | 2(x-1)-14=-8 | | -6j=-7j+10 | | 2|3x-1|+5=33 | | 9-6q=-7q | | V2-5v-6=0 | | 6(x+1)+3=-21 | | 9−6q=-7q | | -5y+2(y+4)=2 | | 7x*x=48 | | -6(2x-4)=72 | | 5y+2(y+4)=2 | | 3/4(r-7)=1 | | 2/3x-2=1/4x+3 | | -23=2(v-7)-5v | | 54=-9-9r | | -10x+39=-11 | | 2w+13=41 | | B2+8b+12=0 | | 47=2x-3 | | -7-8+3x=16 | | 2.5x=-32.5 | | 10x+5=4x+19 |