If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x-246=0
a = 3; b = -2; c = -246;
Δ = b2-4ac
Δ = -22-4·3·(-246)
Δ = 2956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2956}=\sqrt{4*739}=\sqrt{4}*\sqrt{739}=2\sqrt{739}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{739}}{2*3}=\frac{2-2\sqrt{739}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{739}}{2*3}=\frac{2+2\sqrt{739}}{6} $
| 7x-3+77+50=1800 | | -1/4(4x+8)+6=2x-8 | | 100=n-73 | | 3m-6-4m+8=23 | | 115=1/2(105+x) | | 7(-4x+4)+6x=-40-5x | | 123=c+13 | | 6x-12+3x=x+4 | | -2c+6=6c-6 | | 1÷x^2(2x-1)=0 | | 8+4y=1+6 | | X2+4x-221=0 | | 5(y-9)=15 | | 3(x+4)+2x=22 | | 3(2x-4+x)=x+4 | | 3x=-6x+27 | | (x/2)+39=0 | | 5x-2=6-2(4-x)=3x | | -214+14x=106-6x | | 3+3-n=6-n | | 3x+10=2x-35 | | -195+14x=91+3x | | -29+3b=7(5+5b) | | -14+4b+8-8b=-5b-4 | | -14q=4q+-126 | | -32+7b=6(b-6) | | -3x-107=75+4x | | 4n+6(6n-1)=28+6n | | -1+4(8p-7)=25+5p | | -153+12x=-2x+183 | | -30+6x=6(1+4x) | | -5x-1=-(1-2x)-x |