If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-24x=60
We move all terms to the left:
3x^2-24x-(60)=0
a = 3; b = -24; c = -60;
Δ = b2-4ac
Δ = -242-4·3·(-60)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-36}{2*3}=\frac{-12}{6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+36}{2*3}=\frac{60}{6} =10 $
| 4b+2=8b+7 | | 2x2+16+14=0 | | 2y-1=y+14 | | -3x=-52 | | 34=6q-14 | | 5q-4=15q+10 | | 37*x+9=13 | | 10x-100=-5 | | -x/3+5=9 | | -x3+5=9 | | -13=5(1+2m) | | 3x+5x+4x+24=180 | | 3–5x=9+x | | y+17-2=15 | | u−78/3=5 | | (3x+17)(9x-2)=180 | | h/4+13=14 | | (7x-6)(3x+17)=180 | | 6a+10/5=a-2 | | 15y+3=4y+2 | | x+12/4=x/2 | | 40=5(3x-4) | | 2y+5/3=y | | (7x-6)(3x+17)(9x-2)=180 | | 10=5x(1x1/2^2) | | 4y-9=56 | | -4(3x+4)=8 | | 3x+12=9x+5 | | (3-1)x=2x+3(3)-5 | | x/6=½ | | 5c+3=21+3c | | 2x2−3x−9=0 |