If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-24x-9=0
a = 3; b = -24; c = -9;
Δ = b2-4ac
Δ = -242-4·3·(-9)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{19}}{2*3}=\frac{24-6\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{19}}{2*3}=\frac{24+6\sqrt{19}}{6} $
| 8x+12=-14x+25 | | 1.16x+.05=6.2 | | 16x=-10x+5 | | 16x+20x=0 | | 3^1/2=b-2/3 | | 3x+7=2x19 | | a-5=2a-3 | | (3x+12+27)*(12+3x)=(6x-12)*(6x-12) | | a-5=a-3 | | (x+6+9)*(x+6)=(2x)^2 | | 5(x+7)^2=245 | | 12b+4=10 | | 3(x-125)=11.25 | | y=22-5 | | 9(w-6)=-9w+18 | | 3x(5x+2)=36 | | −5(2x−7)=2(x−5)−3 | | 4(3n+4)=7(4n+7)+4 | | -3x^2+21x+90=0 | | (-5/3x)+1/3=-13 | | x3+3x2-4x-12=0 | | 80/y=43 | | -5(4t-2)+7t=2t-6 | | h÷ 2 = 5/6 | | 12x+9x=75 | | -2x^2+21x+90=0 | | 4y^2+3y+1=0 | | 9x2-25=56 | | 24-3/7x=-3/7x+24 | | 9x2=56 | | 5x+7x+8x=40 | | (4x-4)^2+2(4x-4)-63=0 |