If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-24=483
We move all terms to the left:
3x^2-24-(483)=0
We add all the numbers together, and all the variables
3x^2-507=0
a = 3; b = 0; c = -507;
Δ = b2-4ac
Δ = 02-4·3·(-507)
Δ = 6084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6084}=78$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-78}{2*3}=\frac{-78}{6} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+78}{2*3}=\frac{78}{6} =13 $
| 6(c-18)=36 | | 4^(-x)=256 | | m/7+1=8 | | 6+4x+7x=3(6x−12)−4(x−6) | | -3(x-7)+12=0 | | –3=2(j−4)−5 | | x/10+18=16 | | 6=p-(-8) | | n/4-4=4 | | 18=-6/7*h | | 7(3x-4)=98 | | 10p-6=64 | | 2z+2-3=5 | | 9.6=1.2*y | | 9(3–h)+2h=9.5 | | 6h-1=-37 | | z/7+7=-48 | | 0.5(x-4.2)=2 | | 2|z+2|-3=5 | | -2.4+y/7=-13.6 | | 6m+1=-23m= | | k/3+7=33 | | g3+ 12=16 | | 5.3/x-6=5/x | | Y=2x+x2 | | –12(5–k)=–72 | | 3(-2-10j)=-2(9j-9) | | 2x+45=X+80 | | 8d-2=26 | | 6x-1-10x=7 | | 84-x=242 | | -7(-2x-3)=147 |